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Abstract Quantifying how patterns of behavior relate across
multiple levels of measurement typically requires long time
series for reliable parameter estimation. We describe a novel
analysis that estimates patterns of variability across multiple
scales of analysis suitable for time series of short duration. The
multiscale coefficient of variation (MSCV) measures the dis-
tance between local coefficient of variation estimates within
particular time windows and the overall coefficient of varia-
tion across all time samples. We first describe the MSCV
analysis and provide an example analytical protocol with cor-
responding MATLAB implementation and code. Next, we
present a simulation study testing the new analysis using time
series generated by ARFIMA models that span white noise,
short-term and long-term correlations. The MSCV analysis
was observed to be sensitive to specific parameters of
ARFIMA models varying in the type of temporal structure
and time series length. We then apply the MSCV analysis to
short time series of speech phrases and musical themes to
show commonalities in multiscale structure. The simulation
and application studies provide evidence that the MSCVanal-
ysis can discriminate between time series varying in
multiscale structure and length.

Keywords Multiscale analysis . Variability . Temporal
structure . Speech .Music

Temporal variability is ubiquitous across the behavioral and
cognitive sciences. However, measures of temporal variability
tend to focus on particular timescales in data, rather than re-
lating variations across timescales. If they do relate timescales,
such as measures of long-range correlations, the methods tend
to require very long time series (e.g., more than 1,000 points).
In this paper, we introduce a new analysis – the Multiscale
Coefficient of Variation (MSCV) – to estimate temporal var-
iability across multiple timescales even for short time series.

In Gaussian statistics, variance of the mean or its square root,
standard deviation, is the standard measure of variability. Other
types of variability include local variability, global variability,
and serial correlations (Torre & Balasubramaniam, 2011).
Local variability is the difference between adjacent values in a
time series (Low, Grabe, & Nolan, 2000; Madison et al., 2009;
Torre & Balasubramaniam, 2011). Global variability is the dis-
persion of a probability distribution typically quantified by the
coefficient of variation (σ/μ).1 Serial correlation reflects how
the values in a time series are related as a function of their
distance from each other in time, and in particular whether
nearby values tend to be more similar (persistent, positively
correlated) or dissimilar (anti-persistent, negatively correlated)
than chance (Bassingthwaighte, Liebovitch, & West, 1994;
Slifkin & Newell, 1998). Local variability, global variability,
and serial correlations are known to be non-independent of
one another in certain conditions (Gilden, 2001; Marmelat,
Torre, & Delignières, 2012; Torre, Balasubramaniam &
Delignières, 2010).

Serial correlations can be found in most natural time series.
For example, most biological and behavioral systems exhibit
long-range correlations (Goldberger et al., 2002; Hausdorff,

1 Note that some authors discuss serial correlations like long-range mem-
ory as Bglobal variance.^We use global variance here as a term to distin-
guish between coefficient variation and serial correlations.
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Peng, Ladin, Wei, & Goldberger, 1995; Ramos-Fernández
et al., 2004; Sims et al., 2008; West, 2006). In cognitive sci-
ence, long-range correlations are found in memory processes
(Maylor et al., 2001; Rhodes & Turvey, 2007), texts
(Altmann, Cristadoro, & Esposti, 2012), and many other types
of cognitive phenomena (see Kello et al., 2010, for review).

Long-range correlations can be expressed as scaling laws,
i.e., nonlinear functions whereby one variable is related to
another raised to a power, f(x) ~ xα. The exponent, α, can be
determined by plotting the variables on logged axes and esti-
mating the slope (α) using a regression line. For temporal-
based power laws, the variable of interest, f(T), is often some
type of variability estimate (e.g., root mean squared error,
coefficient of variability, etc.) measured as a function of time-
scale T. The accuracy with which scaling laws can be estimat-
ed from data depends on the length (Delignieres et al., 2006)
and sample rate (Wijnants, Cox, Hasselman, Bosman, & Van
Orden, 2013) of measurement series. Delignières et al. found
increased biases and variability of spectral exponent estima-
tion for time series shorter than 1,024 data points. For some
types of time series, 256 data points were acceptable.
However, time series shorter than 1,024 points are typically
considered to be too short in length for reliable parameter
estimation. This restriction is problematic for many behavioral
experiments and other measurement conditions in which it is
prohibitively difficult to collect more than a few dozen repeat-
ed measurements.

The goal of the current paper is to introduce MSCVanaly-
sis as a way to measure patterns of variability across multiple
timescales for time series far shorter than 1,024 data points.
The problem we are working to solve is the estimation of
patterns of variability across multiple timescales for extremely
short time series. The goal is not to estimate scaling laws from
data, but rather, to estimate how variability changes across a
restricted range of timescales. In the following section, we
provide an introduction and description of theMSCVanalysis.
Then we present a simulation study testing the new analysis
using time series generated by ARFIMA models that span
white noise, short-term and long-term correlations. In the sim-
ulation study, we systematically varied the length of the time
series to investigate the sensitivity of the MSCV analysis to
signal type and time series length. We will then apply the
analysis to short time series of speech phrases and musical
themes to show and compare their multiscale structures.

Multiscale coefficient of variation (MSCV)

MSCVanalysis was developed tomeasure the degree to which
the coefficient of variation of measured events spans multiple
temporal scales. For a time series of event durations (e.g.,
reaction times, utterance durations, movement distances), the
MSCV measures the distance between local coefficient of

variation estimates within particular time windows and the
overall coefficient of variation across all time samples. It
should be reiterated that MSCV values cannot be used to
estimate scaling laws. The MSCV analysis simply measures
the patterns of variability across multiple timescales. Also,
coefficient of variation is only meaningful as a ratio unit, so
the user should be aware of what scale of measurement they
are using during application.

The sizes of time windows T can be set by hand, or similar
to scaling law analyses, varied as a power of 2 between a
minimum of 2 and maximum of L/2-1, where L is the number
of measurements in the time series. The time series is tiled
with non-overlapping windows of size T, and the coefficient
of variation is computed within each window. For window
size T, coefficients of variation across windows are averaged,

MSCV Tð Þ ¼ σ Tð Þ
μ Tð Þ :

TheMSCV function can be plotted with window sizes Ton
the x-axis and correspondingMSCV values on the y-axis. The
MSCV function can be quantified using a number of mea-
sures, such as the range, sum, and normalized sum of
MSCV values, and the slope of the function in logarithmic
coordinates (see Fig. 1).

Computing the range and sum of MSCV values is straight-
forward, but the normalized MSCV, MSCVnorm, requires
some explanation. To compute MSCVnorm, the MSCV is di-
vided by the global coefficient of variation for the entire time
series, and normalized relative to the amount of window sizes
NT,

XT

i¼2

MSCV Tð Þ

CV

NT
:

The MSCVnorm value is not bounded by a specific range of
values, but it typically ranges between 0 and 1. By normaliz-
ing the MSCV by the global coefficient of variation,
MSCVnorm provides an estimate of the amount of variability
across bins that are less than the global coefficient of variation.
Time series with random structure will have most window
sizes approximate the global coefficient of variation and will
therefore have an MSCVnorm estimate approximate 1.0. Time
series that have more multiscale structure – variability span-
ning multiple window sizes – will have an MSCVnorm esti-
mate less than one.2

The MSCVanalysis was recently applied to an investigation
of howmusic affects postural sway (Ross,Warlaumont, Abney,
Rigoli, Balasubramaniam, 2016). The radial sway of center of
pressure measurements of postural sway and musical durations

2 For MATLAB scripts go to https://github.com/drewabney/MSCV.git.
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(intervals of onset and offset of sound; Coath et al., 2007, 2009)
were subjected to the MSCVanalysis. Ross et al. were interest-
ed in the multiscale properties of postural sway and musical
durations for the purposes of assessing how the multiscale
structure of postural sway couples to the multiscale structure
of musical durations. Ross et al. observed that MSCVnorm esti-
mates of radial sway and musical durations were more similar
for nonmusicians relative to musicians, suggesting that nonmu-
sicians couple to the multiscale structure of music more so than
musicians. Additional results suggested that the multiscale cou-
pling occurredmore for musical durations corresponding to low
groove music (Janata et al., 2012).

ARFIMA simulations

The ARFIMA (Auto-Regressive, Fractionally Integrated,
Moving Average) modeling method was used to simulate
time series with various degrees of short-range and long-

range serial correlations. ARFIMA models are extensions
to the classical ARMA (Auto-Regressive, Fractionally
Integrated, Moving Average) models. ARMA models
(p,q) include two components: a pth-order AR process
and a qth-order MA process. ARFIMA models (p,d,q)
include a dth- order fractional differencing (FI) process
(Granger & Joyeux, 1980). We are using ARFIMA
models to test the MSCV analysis because ARFIMA
modeling has been previously used to estimate and iden-
tify long-range dependence and fractal exponents in cog-
nitive and behavioral phenomena (Torre, Delignières,
Lemoine, 2007; Torre, Varlet, & Marmelat, 2013;
Wagenmakers, Farrell, & Ratcliff, 2004).

We created three types of time series of durations that are
known to vary in statistical structure: persistent long-range
correlations (LRC), positive short-range correlations (SRC),
and random white noise (WN). For each condition, a pool of
50 series (length = 2048) was generated using the ARFIMA
modeling method (using the fracdiff package in R). All

Fig. 1 Schematic depiction of MSCV analysis. (Top panel) MSCV
profile of example time series. (Bottom panel) Basic graphical
description of MSCV analysis. For each bin size, coefficient of
variation is computed across a sliding, nonoverlapping window and

averaged. For each bin size, average coefficient of variation is
computed (see bottom-right). MSCVrange = .77, MSCVsum = 6.10,
MSCVnorm = .76, MSCVslope = .61
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conditions had a mean of 800 and a coefficient of variation of
~6 %. The auto-regressive (AR) parameter for LRC, SRC, and
WN conditions were 0, 0.6, and 0, respectively. The fractional
integration (FI) parameter for LRC, SRC, and WN conditions
were 0.45, 0, and 0, respectively. The moving average (MA)
parameter was set to 0 for all conditions. The specific ARFIMA
parameters generated three conditions that varied in memory
decay as quantified by the auto-correction function: LRC series
exhibited power-law decay over lags suggestive of long-term
statistical memory, SRC series exhibited an exponential decay
over lags suggestive of short-term statistical memory, and the
WN series exhibited no positive or negative autocorrelations
across lags. For each time series, we estimated the
MSCVnorm, for the entire time series (length 2,048) and for a
random sample of lengths 200, 100, 50, 25, and 10. See Table 1
and Fig. 2 for results. Although the MSCV analysis can com-
pute various estimates from the MSCV profile, our aim is to
quantify properties of multiscale structure using a single-valued
estimate. Therefore, in this simulation study, we chose to only
use the MSCVnorm estimate.

To test the performance of the MSCVnorm estimate against
a common multiscale analysis, we also estimated the Hurst
exponent using the Anis-Lloyd/Peters corrected rescaled
range analysis (Hurst-AL) (seeWeron, 2002) for the simulated
time series. The rescaled range analysis was first introduced
by Mandelbrot and Wallis (1969) and extends Hurst’s (1951)
calculation of a self-similarity parameter, H. The R/S analysis
consists of estimating the range (R) and standard deviation (S)

of a subset of a time series. For example, a subset of a time
series with a minimum value of 3 and maximum value of 9
will have a range of 6. If the standard deviation of the subset
was S = 2, then the rescaled range for this particular subset is
R/S = 3. If we increase the number (n) of observations in the
subset, the linear relationship (H) between R/S estimate and n
in logarithmic coordinates will approximate H = .5 for a ran-
domwalk (e.g., white noise) and will be greater thanH = .5 for
Fractional Brownian motion. The Hurst-AL was used because
it was found to improve estimation performance for small time
series. To our knowledge, no researcher has used the R/S-AL
analysis on extremely small times, e.g., n = 10.

The results suggest that the MSCVnorm estimates are sensi-
tive to signal type. The first observation from the MSCVnorm

estimates is that WN signals approximate a MSCVnorm value
approximating 1.0. The second observation is that the
MSCVnorm decreases from 1.0 as a function of increased
multiscale structure, from WN to SRC to LRC. Hereafter, we
use the term multiscale structure to refer to the observation that
variation can be different or heterogeneous, across timescales.
Decreased or low multiscale structure means that variation is
similar or homogeneous across timescales. Considering the
known statistical dependencies of the three signal types gener-
ated from theARFIMAmodels, these observations provide two
intuitions about the MSCVnorm measure. The two intuitions
depend on whether the user is interpreting the MSCVnorm mea-
sure as an absolute or relative measure.

If considering the MSCVnorm as an absolute measure, the
lower and upper bounds [0.0,1.0] suggest that increasing
MSCVnorm estimates approaching 1.0 correspond to signals with
more homogeneity of variation across bins. Conversely, esti-
mates decreasing from 1.0 suggest more heterogeneity of varia-
tion across bins and therefore, a signal that is more multiscale.

If considering the MSCVnorm as a relative measure, the
directionality of the MSCVnorm estimates between two or
more experimental conditions or partitions becomes informa-
tive. For example, if a user observed that MSCVnorm estimates
for Condition A were lower relative to MSCVnorm estimates
for Condition B, the user could interpret the signals from
Condition A to havemore heterogeneity across bins and there-
fore, is considered more multiscale, relative to the signals in
Condition B.

Another important observation is that the MSCVnorm esti-
mates were sensitive to signal type for all time series lengths.
However, the MSCVnorm estimates failed to discriminate be-
tween LRC and SRC signals for the n = 25 simulations. At n =
10, the LRC and SRC switch orders but both still discriminate
between the WN time series. These results suggest that the
MSCVanalysis is sensitive to different types of time series of
extremely short lengths. For extremely short time series, the
MSCV analysis can discriminate between time series
exhibiting white noise (close to randomness) and time series
with specific temporal correlations.

Table 1 Results from the ANOVAs and planned comparison for
MSCVnorm and Hurst-AL estimates across time series lengths

Time series length F(2,47) pLRC vs. SRC pLRC vs. WN pSRC vs. WN

MSCVnorm

2,048 217.92*** <.001 <.001 <.001

1,024 127.00*** <.001 <.001 <.001

200 117.75*** <.001 <.001 <.001

100 59.59*** .001 <.001 <.001

50 57.46*** >.05 <.001 <.001

25 23.45*** >.05 <.001 <.001

10 12.02*** .02 .02 <.001

Hurst-AL

2,048 2895.90*** <.001 <.001 <.001

1,024 1544.00*** <.001 <.001 <.001

200 428.80*** .001 <.001 <.001

100 239.30*** >.05 <.001 <.001

50 107.05*** .01 <.001 <.001

25 36.33*** .02 <.001 <.001

10 4.15* .01 >.05 .02

Note. *p≤.05, **p≤.01, ***p≤.001. pLRC vs. SRC, pLRC vs. WN, pSRC vs. WN
columns display results from planned comparisons between the three
signal types
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The Hurst-AL measure performed similarly to the MSCV
analysis at longer time series (n = 2048, n = 1024, n = 200).
However, at n = 100, SRC and LRC time series are statisti-
cally indistinguishable, and at n = 50, the SRC and LRC
estimates flip. At n = 10, the Hurst-AL fails to discriminate
between the LRC and WN time series estimates.

Overall, both analyses perform equally well for longer time
series. For smaller time series, both analyses also display
flipped estimates around n = 100 (Hurst-AL) and n = 50
(MSCVnorm). For extremely short time series, theMSCVanal-
ysis – despite a flipping of the SRC and LRC estimates – is
able to discriminate between estimates from SRC and LRC
time series and estimates fromWN time series. The Hurst-AL
estimates at n = 10, showed that WN and LRC estimates were
indistinguishable. Considering the results from this simulation
study, we would advocate users to employ either analysis for
substantially long time series. However, if users desire to es-
timate properties of multiscale variability for extremely short
time series, we advocate utilizing the MSCVanalysis.

Overall, the results from the ARFIMA simulations suggest
that the MSCVnorm provides an intuitive estimate about the
multiscale properties of a signal. In the next section, we report

an application of theMSCVanalysis.We chose our corpora due
to the extreme length limitations of the duration series. As pre-
viously discussed, a main feature of theMSCVanalysis is that it
can assess themultiscale structure of extremely short time/event
series. Hurst-AL estimates provide information about how the
normalized range of values scale across multiple time scales.
MSCVnorm estimates provide information about how the coef-
ficient of variation at specific time scales relate to the global
coefficient of variation.We have demonstrated that for extreme-
ly short time series, assessing the coefficient of variation nor-
malized at various time scales (normalized for global coefficient
of variation) is more sensitive than assessing the rescaled range
of values across multiple time scales.

An empirical comparison of multiscale structure
in language and music

We now provide an application of the MSCV to a novel com-
parison of the relationship between speech and music. The
study of the relationship between speech and music is gener-
ally influenced by a common intuition that both are universal

Fig. 2 Results for Hurst-AL andMSCVnorm estimates as a function of signal type and time series length. Error bars represent standard error of the means
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among human cultures (see Patel, 2010). Studying the com-
monalities between speech and music has lead to rich empir-
ical research programs. Here we focus on the potential com-
mon patterns of multiscale structure across speech and music.

For the study of speech and music, one focus has been on
prosodic properties like melody and rhythm (Hannon, 2009;
Huron & Ollen, 2003; Jusczyk & Krumhansl, 1993; Lerdahl
& Jackendoff, 1983; London & Jones, 2011; Patel & Daniele,
2003; Patel, Iversen, & Rosenberg, 2006; Ramus, Nespor, &
Mehler, 1999). This work was influenced by a hypothesized
typology of an isochronous rhythmic organization: stress-
timed and syllable-timed languages (Abercrombie, 1967;
Pike, 1945). Stress-timed languages were purported to have
equal intervals between stresses, and syllable-timed languages
were purported to have equal intervals between syllable on-
sets. Although empirical research does not support this
Bisochrony^ hypothesis, researchers have started focusing on
durational patterns of vocalic and intervocalic intervals.

To measure durational variability, researchers have uti-
lized the normalized pairwise variability index (nPVI),
which provides a Blocal^ measure of the variability of
durational patterns:

nPVI ¼ 100
m−1

$
Xm−1

k¼1

dk−dkþ1
dkþdkþ1

2

!!!!!

!!!!!;

where m is the number of intervals in a time series and dk
is the duration of the kth interval in the time series. The
nPVI is a dimensionless quantity that provides a measure
of variability of durational differences for pairs of intervals
(i.e., bin size of 2) relative to the average duration of the
pair.

Grabe and Low (2002) observed that nPVI measurements
of vocalic intervals were greater in stress-timed languages
such as British English than in syllable-timed languages such
as French. This finding points to earlier work (see Nespor,
1990) suggesting that stress-timed languages are known to
exhibit more vowel reduction than syllable-timed languages.
Ramus et al. (1999) observed more variability in consonantal
durations for stress-timed languages and proposed that stress-
timed languages are purported to have more complex syllable
structure relative to syllable-timed languages.

In the vein of musical composition, Patel and Daniele (2003)
observed that rhythmic patterns in French and British English
musical themes had similar rhythmic patterns of the composers’
(either French speaking or English speaking) native languages.
Using the nPVI to measure local contrast variability, Patel and
Daniele found that note durations of British English composers
had greater variability relative to note durations of French com-
posers, which corresponds to what was observed in linguistic
nPVI values of speech (Ramus, 2002). Patel and Daniele’s re-
sults point to a potential common property between speech and
music: prosodic patterns via rhythmic durations.

Another potential commonality is that both speech and
music are organized across various levels of hierarchical order
(Lerdahl & Jackendoff, 1983). In music, meter is the expected
pattern of durations, usually denoted by a time signature.
Meter is a recurring pattern of durations and displays structure
(metric structure) across levels of variation (London, 2000).
Using Patel and Daniele’s corpus of musical themes, London
and Jones (2011) found differences across levels of rhythmic
and metrical structure. Recent work in the study of conversa-
tional speech has shown that clustering of speech onsets are
organized across time scales purported to align with levels of
linguistic representation (Abney, Paxton, Dale, &Kello, 2014;
Abney, Kello, & Warlaumont, 2015; see also, Luque, Luque,
& Lacasa, 2015). In an extension of Patel and colleagues
(Patel & Daniele, 2003; Patel, Iversen, & Rosenberg, 2006),
we test whether similarities between the multiscale variability
of speech and music can be observed across languages that
vary on the stress-timed versus syllable-timed spectrum.

In line with work suggesting that stress-timed languages ex-
hibit more diverse and complex syllable structure (Nespor,
1990; Ramus et al. 1999), we predict that music composed
and language produced by native speakers of a stress-timed
language (e.g., English) will display more multiscale structure
relative to native speakers of syllable-timed languages, e.g.,
French. To test this prediction, we constructed musical and
speech corpora and submitted the musical and speech durations
to theMSCVanalysis to estimate MSCVnorm values. We expect
to observe lower MSCVnorm for music and speech produced by
native speakers of a stress-timed language, which would indi-
cate more multiscale structure. Ramus et al. (1999) observed
more consonantal variability for stress-timed language.
Therefore, we predict that, controlling for local contrast vari-
ability (nPVI), MSCVnorm estimates will be lower for stress-
timed languages relative to syllable-timed ones.

Musical corpus

Our source of musical material was a subset of the corpus used
in Patel and Daniele (2003). Patel and Daniele focused on
collecting musical themes written by native-speaking British
English and native-speaking French composers who were
born in the 1800s and died in the 1900s. The chosen musical
themes consisted of at least 12 notes (e.g., eighth, quarter, etc.)
with no internal pauses or rests (cf. Patel & Daniele, 2003).
Therefore, for each musical theme, we had a time series of
note durations. To control for metrical type, in the current
analyses we only included musical themes in duple time.3

Themes with duple time have a binary meter where the meter

3 In earlier analyses including musical themes exhibiting triple time and
other complex metrical structures, we found that the results were neither
straightforward nor reliable. Future work with larger corpora should at-
tend to the issues of multiple metrical types.
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divides beats into two subdivisions, e.g., 2/2, 2/4, 6/8. We also
excluded musical themes with isochronous durational pat-
terns. A total of 59 English musical themes and 79 French
musical themes were included in the current study (see
Table 2). For our corpus, the mean duration amount was 20
durations and the minimum duration amount was 12
durations.

To investigate differences in durational variability across
musical themes, we estimated CV, nPVI, and MSCVnorm for
each musical theme. Because we are interested in how the
estimates of the MSCV explain variance above and beyond
local measures of durational contrast (e.g., nPVI), we also
include analyses where nPVI was residualized out of the
MSCVnorm variable.

The nPVI measures the average degree of durational con-
trast (or variability) between two successive durations in a
time series of discretized events. nPVI can be considered a
measure of local variability. The nPVI is a single valued esti-
mate that is computed by (1) estimating absolute difference
between two successive intervals durations, (2) normalize by
the mean duration of the pair, and (3) multiplied by 100. nPVI
estimates closer to 100 are interpreted as having larger
durational contrasts relative to lower nPVI estimates. The
nPVI has been used in studies of speech and music rhythm
(Grabe & Low, 2002; Low, Grabe, & Nolan, 2000; Patel &
Daniele, 2003; Ramus, 2002; Ross, Warlaumont, Abney,
Rigoli, & Balasubramaniam, 2016).

English music and French music did not differ in estimates
of CV (β = −.05, t[136] = −.30, p = .77) or nPVI values, β =
.−21, t(136) = −1.20, p = .23. However, English music did

have lower values of MSCVnorm relative to French music,β =
.61, t(136) = 3.29, p = .002. It is important to note that our
nPVI results slightly diverge from Patel and Daniele (2003):
although we found English music to have higher nPVI esti-
mates relative to French music, this difference was not statis-
tically reliable. One possible explanation for this difference is
that we only included musical themes with duple meter, re-
ducing the size of the corpus by almost 25 %.

To assess if MSCVnorm captured variance not explained by
local variability, we residualized out nPVI from MSCVnorm.
After controlling for nPVI, the original pattern of results held,
suggesting that English music had lower MSCVnorm estimates
relative to French music, β = .59, t(136) = 3.56, p < .001 (see
Fig. 3).

We also submitted the Hurst-AL to the musical corpus. The
Hurst-AL analysis yielded estimates for less than 5 % of the
musical corpus. Given the low percentage of Hurst-AL esti-
mates, we did not proceed to test for differences across the
musical corpus. Inspecting the event series in the musical
corpus that did and did not yield Hurst-AL estimates provided
more insight into the differences between the Hurst-AL anal-
ysis and the MSCVanalysis. The Hurst-AL analysis could not
converge on event series with multiple consecutive identical
event durations (e.g., Bax, b508: .5, .5, .5, .5, 1.0, 1.5, .5, .5,
.5, .5, 1.0, 1.0…). Because the Hurst-AL estimate relies on a
rescaling of ranges for particular window sizes, at small win-
dow sizes, the range will be 0. The MSCV analysis relies on
coefficient of variation, not a metric of range, and is therefore
more flexible for a diverse array of event series types.

A lower MSCVnorm estimate suggests that rhythmic dura-
tions spanmore bins of theMSCV profile, which is suggestive
of an event series that is more multiscale. Our results sug-
gested that, even when controlling for local variability
(nPVI), English music has stronger multiscale properties rel-
ative to French music. In other words, there appears to be
more heterogeneity of variance across timescales for English
music relative to French music.

Linguistic corpus

The main hypothesis is that music and spoken language have
similar multiscale structure as a function of the composer’s
native language and the native language of speakers. We can
also test whether or not specific units of language – such as
vowel durations and consonant durations – display different
multiscale structure. Our source of linguistic material was a
subset of the BonnTempo Corpus (BTC 1.0; Dellwo et al.,
2004). The BTC was originally constructed for the study of
rhythmic variability of read speech across languages
representing Bstress-timed^ (e.g., English and German) and
Bsyllable-timed^ (e.g., French and Italian) rhythmic classes.
The text is a passage from a novel BSelbs Betrug^ by
Bernhard Schlink.

Table 2 Composers examined in this study

Composers # Themes

English

Bax 6

Delius 10

Elgar 8

Holst 7

Ireland 4

Vaughan Williams 24

French

Debussy 13

Fauré 6

Honegger 7

Ibert 6

Milhaud 6

Poulenc 5

Ravel 7

Roussel 7

Saint-Saëns 22
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In the BonnTempoCorpus, speakers were instructed to first
read the passage in their Bnormal reading^ rate. After the first
reading, speakers were instructed to read the passage again at
different speech tempi. We only included read speech from
native English and French speakers reading the passage at a
Bnormal reading^ rate. The BonnTempo Corpus consists of
Praat™ textgrid files (Nijmegen, The Netherlands) with
human-coded labeling of syllables, consonantal intervals,
and vowel intervals. We created custom Praat™ scripts to
extract consonantal and vowel intervals from textgrid file.
Our linguistic corpus consisted of 49 read phrases in English
and 42 read phrases in French. For our corpus, mean duration
amount was 27 durations with a minimum duration amount of
13 durations. For each read speech phrase, we created event
series, akin to the rhythmic durations in the musical themes for
consonantal durations and vowel durations. To investigate
differences in durational variability across read speech, we
estimated CV, nPVI, and MSCVnorm for each phrase and du-
ration type. Similar to the analysis of musical themes, we also
included an analysis where nPVI was residualized out of the
MSCVnorm variable.

CV estimates were higher for English speakers (M = .51,
SE = .01) relative to French speakers (M = .44, SE = .02), β =
−.72, t(178) = −3.53, p < .001. CV estimates did not vary
across consonantal durations (M = .46, SE = .01) and vowel
durations (M = .50, SE = .02), β = .02, t(178) = .14, p = .86.
We observed a Language × Duration Type interaction, β =
.59, t(178) = 2.06, p = .04, suggesting that CV estimates for
French consonant durations (M = .41, SE = .02) were lower
than English consonant durations (M = .51, SE = .02), t =
−3.53, p = .003, but estimates for French (M = .49, SE =
.02) and English vowel durations (M = .51, SE = .02) were
not reliably different, t = −.63, p = .92.

nPVI estimates were higher for English speakers (M =
57.06, SE = 1.51), relative to French speakers (M = 50.82,
SE = 1.45),β = −.73, t(178) = −3.61, p < .001. nPVI estimates
were higher for consonant durations (M = 55.44, SE = 1.54)
relative to vowel durations (M = 52.91, SE = 1.50), β = −.45,

t(178) = −2.32, p = .02. We observed a Language × Duration
Type interaction, β = .29, t(178) = 2.11, p = .03, suggesting
that nPVI estimates for French consonant durations (M =
49.70, SE = 2.10) were lower than English consonant dura-
tions (M = 60.37, SE = 1.99), t = −3.61, p = .002, but estimates
for French (M = 51.93, SE = 2.02) and English vowel dura-
tions (M = 53.76, SE = 2.18) were not reliably different, t =
−.62, p = .92.

MSCVnorm estimates for English speakers (M = .92, SE =
.01) and French speakers (M = .93, SE = .01) were not reliably
different, β = .31, t(178) = 1.60, p = .10. MSCVnorm estimates
were higher for consonant durations (M = .97, SE = .01) rel-
ative to vowel durations (M = .88, SE = .01), β = −.65, t(178)
= −3.54, p < .001. We did not observe a Language × Duration
Type interaction, β = −.40, t(178) = −1.47, p = .14.

Finally, to control for local variability estimated by the
nPVI, we residualized out the variance explained by the
nPVI estimates and constructed a new model for the
MSCVnorm estimates. Residual MSCVnorm estimates for
English speakers (M = −.009, SE = .01) were reliably lower
relative to French speakers (M = .01, SE = .02),β = .43, t(178)
= 2.26, p = .02. Residual MSCVnorm estimates for vowel du-
rations (M = −.04, SE = .01) were reliably lower relative to
consonant durations (M = .04, SE = .01), β = −.59, t(178) =
−3.19, p = .002. We observed a marginal Language ×
Duration Type interaction, β = .29, t(178) = −.50, p = .06.
However, planned comparisons suggested that French conso-
nant durations (M = .07, SE = .01) were not reliably different
than English consonant durations (M = .02, SE = .01), t = 1.61,
p = .38, nor were estimates for French (M = −.05, SE = .02)
different from English vowel durations (M = −.04, SE = .01), t
= −.47, p = .96 (see Fig. 3).

We also submitted the Hurst-AL analysis to the language
corpus. The Hurst-AL analysis provided estimates for 97.8 %
(n = 178) of the language corpus, and therefore, we tested for
differences across language and duration type. Hurst-AL esti-
mates for English speakers (M = .45, SE = .07) and French
speakers (M = .44, SE = .08) were not reliably different, β =

Fig. 3 Results of the residual analyses for the musical theme durations (left) and language durations (right). Error bars represent standard error of the means
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−.12, t(174) = −.59, p = .55. Hurst-AL estimates were higher
for vowel durations (M = .46, SE = .07) relative to consonant
durations (M = .43, SE = .08), β = .44, t(174) = 2.16, p = .03.
This result corroborates with the results from the MSCVnorm

estimates suggesting that vowel durations have more
multiscale structure relative to consonant durations. We did
not observe a Language × Duration Type interaction, β =
−.19, t(174) = −.64, p = .52. Residual Hurst-AL estimates
(controlling for nPVI) did not differ across language, duration
type, nor the language × duration type interaction, all ps > .10.

Interim discussion of the application results

The results from the residual MSCVnorm estimates for musical
themes suggests that the composer’s native language has an
influence on the multiscale structure of his or her work.
Similar to other past studies (Patel & Daniele, 2003; see also
London & Jones, 2011), we applied a quantitative measure of
a proposed property of speech and music, multiscale variabil-
ity, to the music of composers from stress-timed (British
English) and syllable-timed (French) languages. We found
that, controlling for local variability (nPVI values), English
classical music had more multiscale variability, as suggested
by observing lower MSCVnorm estimates, relative to French
classical music. We limited our corpus of musical themes to
only consist of themes with duple meter. In a re-analysis of
Patel and Daniele (2003), London and Jones (2011) investi-
gated two levels of linguistic structure and found that only
themes in duple time showed the differing patterns of local
variability across British English and French themes.

We observed that English-read speech had more multiscale
variability, as suggested by observing lower MSCVnorm esti-
mates, relative to French-read speech. Importantly, this obser-
vation only occurred after residualizing out variance explained
by nPVI estimates.We also observed that vowel durations had
more multiscale variability relative to consonant durations.
Finally, we observed a marginal interaction suggesting that,
for consonantal durations, English-read speech has more
multiscale variability relative to French-read speech.
However, subsequent analyses suggested that this was only
a nominal difference. Nevertheless, we can speculate that
these results relate to the idea that stress-timed languages have
more complex syllables (Dauer, 1983). Ramus et al. (1999)
observed that consonantal durations in stress-timed languages
have more variability relative to syllable-timed languages.
Again, however, these interpretations are speculative consid-
ering the lack of a reliable effect in subsequent statistical tests.

Across the results of speech and music, one observation is
that the patterns of the MCSVnorm estimates were similar across
the language of the composer (musical corpus) and speaker
(language corpus). This observation suggests that, at least for
English and French, stress-timed language structure exhibits
more multiscale variability relative to syllable-timed language

structure. If cultural differences do in fact influence the compo-
sition ofmusic, perhaps this pattern suggests that the complexity
of syllable structure influences the degree to which a musical
theme is composed. This conjecture could be informed by future
work with larger and more diverse speech and music corpora.

Discussion and conclusion

Methods for estimating patterns of variation across scales of
measurement typically require the user to have substantially
large time series. In this paper, we introduced a new analysis
that affords researchers the ability to estimate patterns of var-
iability across temporal scales using time series of limited
length.

In the simulation study, we observed that theMSCVanalysis
was sensitive to different types of time series that varied depend-
ing on the temporal structure generated from ARFIMAmodels.
From the MSCV profile, the user can choose from a variety of
estimates that, in variousways, quantify the pattern of variability
across temporal scales. We observed that the MSCVnorm esti-
mate generally ranges from 0.0 to 1.0. In the simulation study,
ARFIMA models generating white noise time series produced
MSCVnorm estimates around 1.0. ARFIMA models generating
long-range and short-range correlations produced MSCVnorm

estimates less than 1.0. Notably, long-range correlations are
known to display multiscale structure across temporal scales
and were observed to have the lowest MSCVnorm estimates.
As previously noted, the MSCVanalysis is not meant to assess
the fractality of a time or event series. Researchers interested in
assessing whether or not a time series is fractal are encouraged
to use previously existing methods (Eke, Hermán, Kocsis, &
Kozak, 2002; Goldberger et al., 2002; Hausdorff, Peng, Ladin,
Wei, & Goldberger, 1995; Holden, 2005).

In the simulation study we also compared the MSCVanal-
ysis with a common multiscale analysis, the rescaled range
analysis (Hurst-AL). We found that both the MSCV and
rescaled range analyses performed equally well for longer
time series. However, the MSCV outperforms the rescaled
range analysis for extremely short time series and for event
series with diverse properties, e.g, consecutive identical dura-
tions in the musical corpus.

In the application study, we applied theMSCVanalysis to a
comparison between speech and music. Previous research had
shown that the rhythmic properties of music and speech, as
quantified by the nPVI, vary as a function of whether the
composer’s native language was stress-timed (e.g., English)
or syllable-timed, e.g., French (Patel & Daniele, 2003). In our
application study, we investigated whether multiscale proper-
ties of speech and music, as quantified by the MSCVnorm

estimate, differed as a function of stress- and syllable-timed
languages, too. We observed that MSCVnorm estimates for
note durations of music and read speech differed across
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English and French. Specifically, English music and speech
had lower MSCVnorm estimates relative to French music and
speech. These results suggest that stress-timed languages have
stronger multiscale properties relative syllable-timed lan-
guages. Conversely, these results suggest that the variability
of syllable-timed languages is more homogeneous across tem-
poral scales. The application study provided a good example
of how the MSCV analysis can differentiate between time
series of short durations.

In both the simulation study and the application study, we
used the default binning parameters for each time series,
[2,(L/2)-1]. However, the MATLAB scripts can be adjusted to
define any range of bins as long as the minimum bin is a whole
number greater than 1. The MSCVanalysis can be applied to a
wide range of datasets with duration- or interval-level data
points. Coefficient of variation is a dimensionless number be-
cause it is independent of the unit of measurement specific to a
dataset. The analysis has already been applied to measurements
of postural sway (Ross et al., 2016), musical durations estimat-
ed from an auditory saliency model (Ross et al., 2016; see also
Coath et al., 2007, 2009), and durations from musical themes
and spoken language (current study).

The results from the simulation and application studies
suggest that the MSCV analysis can discriminate between
time series that vary in multiscale structure. Importantly, the
results from the simulation study suggest that even short time
series (e.g., lengths of 50 or 25 data points), can vary in
multiscale structure and can be differentiated using the
MSCV analysis. It should be noted that for extremely short
time series (e.g., 25 data points), the MSCVanalysis failed to
discriminate between time series of specific temporal correla-
tions, e.g., LRC vs. SRC. Nevertheless, even for extremely
short time series, the MSCV analysis, and specifically the
MSCVnorm estimate, was sensitive to whether a time series
had heterogeneous structure (e.g., LRC and SRC) or homoge-
neous structure across timescales, e.g., white noise. Future
research should try the MSCV analysis on a wide corpus of
short and long sequences of behavioral data such as speech,
human motor performance, and reaction times, and continu-
ous measurements of neural data such as spike trains and time-
varying EEG signals.
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