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Abstract 

Recent studies of naturalistic face-to-face communication have 
demonstrated temporal coordination patterns such as the 
synchronization of verbal and non-verbal behavior, which provides 
evidence for the proposal that verbal and non-verbal 
communicative control derives from one system. In this study, we 
argue that the observed relationship between verbal and non-verbal 
behaviors depends on the level of analysis. In a re-analysis of a 
corpus of naturalistic multimodal communication (Louwerse et al., 
2012), we focus on measuring the temporal patterns of specific 
communicative behaviors in terms of their burstiness. We 
examined burstiness estimates across different roles of the speaker 
and different communicative channels. We observed more 
burstiness for verbal versus non-verbal channels, and for more 
versus less informative language sub-channels. These findings 
demonstrate a new method for analyzing temporal patterns in 
communicative behaviors, and they suggest a more complex 
relationship between verbal and non-verbal channels than 
suggested by prior studies. 
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Introduction 
In cognitive science, a considerable number of studies have 
investigated the role of non-verbal communication in 
relation to verbal communication. The majority of these 
studies suggest an intrinsic relationship between verbal and 
non-verbal communication. For instance, a strong link has 
been shown between lexical access and gesturing, such that 
when people gesture, lexical access is facilitated (Rime & 
Schiaratura, 1991). Also, the time gap between gesture and 
a familiar word is considerably shorter than the gap between 
gesture and an unfamiliar word (Morrel-Samuels & Krauss, 
1992), and when speech is disrupted, gestures are halted 
(Mayberry & Jaques, 2000). Gesture is thought to be 
intrinsically related to language processing (Butterworth & 
Morrissette, 1996) because most gestures occur when 

people speak (McNeill, 1992), and because of evidence 
linking gesture with language development (Butcher & 
Goldin-Meadow, 2000). In fact, non-verbal and verbal 
communication are sometimes argued to be so interwoven 
that gesture and speech are co-expressive manifestations of 
one integrated system, forming complementary components 
of one underlying process that helps organize thought 
(Goldin-Meadow, 2005; McNeill, 1992).  

Louwerse, Dale, Bard, and Jeuniaux (2012) investigated 
the temporal relationship between matching behaviors in 
dialog partners, such as manual gesture in one speaker vs. 
the same manual gesture in the other speaker. By applying a 
cross-recurrence analysis, Louwerse et al. showed 
synchronized matching behavior in all categories (language, 
facial, gestural) that were investigated at temporal lags short 
enough to suggest imitation of one speaker by the other. 
Louwerse et al. concluded that the similarities between the 
different channels – verbal and non-verbal – demonstrated 
that the temporal structure of matching behaviors provided 
low-level and low-cost resources for human interaction.  

So far, all studies focusing on the similarities between 
verbal and non-verbal communication, including Louwerse 
et al. (2012), focused on the temporal matching of verbal 
and non-verbal behavior. They tend not to investigate the 
temporal distribution of independent behavioral event 
dynamics. Complex behaviors such as human interaction 
tend not to show the strictest forms of synchrony, but 
instead are more loosely, functionally coupled (e.g., Fusaroli 
et al., 2014). Instead, the overall pattern of behavior, 
expressed in the distribution of events, may reflect particular 
local patterns of interaction – when one interlocutor 
gestures, it may sustain itself for a given period of time 
before waning; when another person speaks, this burst of 
behavior may look quite different, sustaining itself for 
longer, more regular periods of time. These event dynamics 
might paint a different picture of the relationship between 
verbal and non-verbal channels. 



 

The Property of Burstiness 
Most work studying human communication is based on 
dyadic analyses that focus on temporal patterns across 
partners rather than the temporal patterns of specific 
behaviors produced by each partner. In the current study, the 
large multimodal corpus of human communication collected 
and reported in Louwerse et al. was re-analyzed to focus on 
the quantification of a particular property of behavior, 
burstiness.  

Using the framework developed by Goh and Barabasi 
(2008) and extended by others (e.g., Jo, Karsai, Kertész, & 
Kaski, 2012), we estimated the burstiness of verbal and non-
verbal behaviors. The burstiness parameter, B, provides an 
estimate of a system’s activity patterns spanning from 
periodic (B = −1), to random (B = 0), to theoretically 
maximal burstiness (B = 1) (see Figure 1). Goh and 
Barabasi (2008) observed that human phenomena like 
human texts and email patterns have positive burstiness 
estimates, B > 0, whereas human cardiac rhythms were 
found to have periodic burstiness estimates, B < 0.  

 
Figure 1: Overview of system’s activity patterns spanning 
from periodic, to random, to theoretically optimally bursty. 

The Current Study 
The goal of the current study was to investigate the temporal 
dynamics of behavioral events across verbal and non-verbal 
communicative modalities during face-to-face human 
interaction. We focus on the measure of burstiness, now 
widely used in statistical physics to capture the temporal 
patterns of point processes in complex network interactions.  

In the first analysis section, we investigated whether or 
not there were differences in the burstiness of behaviors that 
are categorized into verbal and non-verbal channels. It is 
possible that verbal and non-verbal channels have similar 
degrees of burstiness, which would be consistent with 
previous work suggesting a strong intrinsic relationship. 
However, if the channels exhibit different degrees of 
burstiness, such results would suggest a more complex 
relationship between verbal and non-verbal communication. 
To further explore and understand the burstiness measure, 

we also investigated the burstiness of sub-channels that 
constitute the language communicative channel. Our results 
indicate that burstiness is different for verbal versus non-
verbal behaviors, and also for different aspects of language 
behaviors. 

Methods 

Multimodal Communication Corpus 
The original task developed to collect these multimodal data 
is described by Louwerse et al. (2008) and Louwerse et al. 
(2012), who were interested in collecting multimodal 
structure of human interaction in order to inform avatar 
design for intelligent tutoring systems and other 
technologies. In the task, N = 24 pairs of participants helped 
each other navigate a map. Each pair of participants 
completed 8 rounds of navigation. For each round, one 
participant was chosen as the “Information Giver”, and 
other the “Information Follower.” The Information Giver 
had a complete map, and the Information Follower had a 
noisy and partial map. This mismatch between maps was 
intended to elicit communication and predict the points at 
which misunderstandings were likely to occur. The 
participants had to use language and gesture via webcam so 
that the Information Follower could reconstruct a map route 
with the help of the Information Giver. The corpus was 
developed by taking these 192 recordings of interactions 
and coding a wide variety of behaviors. These codings were 
based on well-known or adapted coding schemes in 
discourse, along with some other semi-automated 
procedures (see Louwerse et al., 2008 for details). All 
behaviors were coded in 250ms to encompass relatively fast 
behaviors such as nodding, acknowledgements, and smiling. 
The output from this coding procedure was a multicolumnar 
data format of binary point series that represented the 
occurrence of different behaviors at a 250ms interval. These 
250ms intervals were the subject of our burstiness analyses.  

We chose 39 behaviors that fit into four specific 
behaviors channels (as did Louwerse et al., 2012). 
Behavioral channels were categorized into two factors, 
Channel and Role. For the Channel factor, channels were 
identified as either “Face & Head,” “Manual Gesture,” 
“Face Touch,” or “Language.” For the Role factor, channels 
were identified as either Giver or Follower. For the levels of 
the Role factor, all channels were included for the Giver and 
the Follower. See Table 1 for the behaviors that were 
included into each channel. The language sub-channels were 
annotated at the utterance-level.  
	
	
	
	
	
	



 

Table 1: List of Channels, Sub-channels, and Behaviors 
 

channel sub-channels behaviors 
face & 
head 

mouth laughing, lip tightening 

 eyes blink, rolling eyes 
 eyebrows asymmetrical, down-

frowning, out brow raiser 
 head nodding, shaking 

manual 
gesture 

 beat, deictic, iconic, 
metaphoric, symbolic 

touch 
face 

 touching cheek, chinrest 

language dialogue acts acknowledgements, align, 
check, clarify, explain, 
instruct, query-what, 
query-yes/no, ready, 
reply-no, reply-what, 

reply-yes 
 discourse 

connectives 
alright, no, ok, um, well, 

yes 
 descriptions color, compass direction, 

digit, relative direction, 
spatial preposition 

	
Construction of Multivariate Spike Trains and 
Inter-event Intervals 
We are interested in estimating the burstiness of multimodal 
communicative behavior and are therefore working with a 
multivariate class of spike trains. To our knowledge, the 
current study provides the first steps towards dealing with 
burstiness in multivariate spike train corpora. The protocol 
converts multivariate spike trains into inter-event interval 
(IEI) distributions. These interval distributions help quantify 
the temporal clustering of communicative events across 
channels.  

First, for each behavior, we created a spike train of onset 
events which excludes successive ‘1’s for prolonged events. 
Second, for each communicative channel (Face & Head, 
Manual Gesture, Face Touch, Language), we summed the 
spike trains from each behavior, yielding a multimodal 
event series where a ‘0’ represents a sample when no event 
occurred, a ‘1’ represents a sample when one event 
occurred, and any number greater than 1 represents a sample 
when two or more events occurred. For example, a sample 
with a “Laughing” event and a “Nodding” event would have 
a “2” in the event series. Any sample with two or more 
events is considered a sample of simultaneous 
communicative behavior which we discuss below. Finally, 
IEI’s were computed from the multimodal event series to 
construct an IEI distribution for each channel for each map 
task role (Giver or Follower).  

An IEI is computed by considering two consecutive 
events, tj and tj+1, and finding the temporal difference 

between them, τ = tj+1 − tj. For an IEI that contains 
simultaneous communicative behavior (2 or more events in 
the same sample), an IEI, τ, was computed and added to the 
distribution in addition to a zero for each additional event. 
For example, when an IEI with the second sample has 3 
events, we would add to the IEI distribution (1) the 
corresponding τ and (2) two zeros (0,0). We chose to add 
this component to the protocol because we wanted to treat 
simultaneous communicative behavior as quantitatively 
’more bursty’. Adding zeros to an IEI distribution will 
amplify a burstiness estimate. IEI distributions for each 
communicative channel and each map task role were 
submitted to estimates of burstiness.  

Estimation of Burstiness 
The burstiness parameter, B, is defined as,  
	

	
	
where στ is the standard deviation of the IEI distribution and 
mτ is the mean of the IEI distribution (Goh & Barabási, 
2008; Jo, Karsai, Kertész, & Kaski, 2012). Alternative 
measures of burstiness have been employed in previous 
studies in computational linguistics (Altmann, 
Pierrehumbert, & Motter, 2009; Pierrehumbert, 2012) 

utilizing parameter fitting from a stretched exponential 
distribution (Weibull distribution). These alternative 
measures have provided unique insights into the dynamics 
of linguistic levels of description. Our decision to utilize the 
burstiness parameter, B, is twofold. First, parameter 
estimation from a distribution requires a minimum number 
of data points or IEIs. Therefore, with the properties of our 
corpus, parameter estimation from distribution fitting 
requires the implementation of confidence intervals, which 
can be avoided with the utilization of the burstiness 
parameter, B. Second, one goal of this study is to account 
for simultaneous communicative behavior as a higher 
degree of burstiness. The burstiness parameter, B, is 
amplified when zeros are added to the IEI distribution and 
therefore an ideal option for the current study. B is bounded 
from [-1,1], where B = 1 for a theoretical maximum bursty 
behavior, B = -1 for completely regular behavior (e.g., 
metronome), and B = 0 for a homogeneous Poisson process, 
i.e., independent events. We omitted trials that did not 
include reliable burstiness estimates for any of the four 
channels across the MapTask roles in the first analysis 
section (1.24% of trials) and for any of the three channels 
across the MapTask roles in the second analysis section 
(1.00% of trials).  

result also points to the context-specific nature of communicative dynamics: the Giver/Follow dyad was constrained by the
specific task rules and goals.

Finally, we observed that the degree of matching of burstiness and memory was predictive of task performance. The more
the Giver and the Follower in a dyad mismatched in their linguistic burstiness, the better they performed on the map task. This
result, in addition to the differences in burstiness estimates across role structure suggests that burstiness is sensitive to role
structure and also that it is beneficial for task roles to be distinct for this particular communicative context. The result of more
mismatched memory estimates predicting better task performance adds additional evidence for the importance of distinctive
role structures in communicative tasks.

Overall, our results suggest that multimodal communicative behavior can be characterized by burstiness and memory
properties estimated from the dynamics of event onsets. Furthermore, estimates of burstiness and memory have predictive value
for successful and unsuccessful interactions. Future work should focus on applying this perspective to other communicative
contexts and across diverse groups such as developing populations and populations at risk for social and communicative
disorders.

Methods
Source of Maptask Corpus
The original task developed to collect these multimodal data is described in Louwerse et al. (2008) and Louwerse et al. (2012).
Researchers were interested in collecting multimodal structure of human interaction in order to inform avatar design for
intelligent tutoring systems and other technologies. In the task, N = 24 pairs of participants helped each other navigate a map.
Each pair of participants did 8 rounds of navigation. For each round, one participant was chosen as the “Information Giver”, and
other the “Information Follower”. The Information Giver had a complete map, and the Information Follower had a noisy and
partial map. The participants had to use language and gesture via webcam so that the Information Follower could reconstruct a
map route with the help of the Information Giver. The corpus was developed by taking these 192 recordings of interactions and
coding a wide variety of behaviors. These codings were based on well-known or adapted coding schemes in discourse, along
with some other semi-automated procedures (see Louwerse et al., 2008 for details). The output from this coding procedure was
a multicolumnar data format of binary point series that represented the occurrence of different behaviors at a 250ms interval.
These 250ms intervals were the subject of our burstiness and memory analyses.

Construction of multivariate spike trains and inter-event intervals
We are interested in estimating the burstiness and memory of multimodal communicative behavior and are therefore working
with a multivariate class of spike trains. To our knowledge, the current study provides the first steps towards dealing with
burstiness and memory in multivariate spike train corpora. The protocol converts multivariate spike trains into IEI distributions
accounting for simultaneous communicative events across channels.

First, for each channel, we created a spike train of onset events which excludes successive ’1’s for prolonged events. Second,
for each communicative modality (linguistic or nonlinguistic), we summed the spike trains from each channel (11 or 9 for
linguistic or nonlinguistic communicative modalities, respectively), yielding a multimodal event series where a ’0’ represents a
sample when no event occurred, a ’1’ represents a sample when one event occurred, and any number greater than 1 represents a
sample when two or more events occurred. For example, a sample with an ”affirmative head shake” event and a ”laughing”
event would have a ”2” in the event series. Any sample with two or more events is considered a sample of simultaneous
communicative behavior which we discuss below. Finally, inter-event intervals (IEI) were computed from the multimodal event
series to construct an IEI distribution for each communicative modality for each map task role (Giver or Follower).

An IEI is computed by considering two consecutive events, tj and tj+1, and finding the temporal difference between them,
t = t j+1 � t j. For an IEI that contains simultaneous communicative behavior (2 or more events in the same sample), an IEI, t ,
was computed and added to the distribution in addition to a zero for each additional event. For example, when an IEI with
the second sample has 3 events, we would add to the IEI distribution (1) the corresponding t and (2) two zeros (0,0). We
chose to add this component to the protocol because we wanted to treat simultaneous communicative behavior as quantitatively
’more bursty’. Adding zeros to an IEI distribution will inflate a burstiness estimate (see below). IEI distributions for each
communicative modality and each map task role were submitted to estimates of burstiness and memory.

Estimation of burstiness and memory
The burstiness parameter, B, is defined as,

B =
st �mt
st +mt

, (1)
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Figure 2a and 2b: Burstiness across channels with a) 

Information Giver (G) and Follower (F) combined, and b) 
the roles separated. Error bars reflect 95% CIs. 

Investigating Differences in Burstiness across 
Verbal and Non-verbal Channels 

Mixed effects models (Bates et al., 2014; Team R., 2013) 

were utilized to determine if burstiness differed across 
different channels. The first set of analyses was conducted 
to compare burstiness estimates across role structure and 
communicative channels. Linear models were utilized to 
predict burstiness estimates. Fixed effects for these models 
included map task role (leader or follower), communicative 
channels (Face & Head, Manual Gesture, Face Touch, and 
Language), and event count for each communicative 
channel. Event count was added into the model as a 
covariate to control for the potential relationship between 
burstiness estimates and the number of behavioral events 
going into the analysis. Dyad and map type were included as 
random effects.  

If there are differences across communicative channels, 
we can observe such differences in a variety of ways: are 
there differences in the temporal structure across 
communicative modalities (1) collapsing burstiness 
estimates across MapTask roles? (2) within MapTask roles 
(e.g., Follower:Manual Gesture vs. Follower:Language)? 
and/or (3) across MapTask roles (e.g., Follower:Manual 
Gesture vs. Giver: Manual Gesture)? 

Collapsing burstiness estimates across MapTask role, we 
observed a significant main effect of communicative 
channel, F(3, 1030) = 162.55, p < .0001 (Figure 2a). See 
Table 2 for results from multiple comparison tests. Overall, 
the language channel (M=.16, SE=.003) was observed to be 
more bursty relative to the manual gesture channel (M = .14, 
SE = .01), b = .08, p = .009. 
	
	

Table 2: Multiple Comparisons from the random mixed 
effects model: *p < .05, **p < .01, ***p < .001.  
 Multiple Comparisons Beta Z-score 

Channel Man. Gest. v.  Face/Head .08 7.9*** 
 Touch Face v.  Face/Head .11 9.6*** 
 Language v.  Face/Head .17 16.7*** 
 Touch Face v.  Man. Gest. .02 2.2 
 Language v.  Man. Gest. .08 7.5*** 
 Language v. Touch Face .05 4.6*** 

Role Leader v. Follower .01 .7 
Int.  F:Man. Gest v. F:Lang -.07 -4.79 *** 

 G:Man. Gest. v. G:Lang .05 3.17*  
 F:Man. Gest v. G:Lang .06 3.08* 
 G:Man. Gest v. F:Lang .04 2.79 

 
The communicative channel x map task role interaction 

was significant, F(3, 1030) = 20.97, p < .0001, therefore, we 
tested for multiple comparisons using Tukey Honestly 
Significant Difference tests to investigate differences within 
and across MapTask roles (Figure 2b). At this level of the 
analysis, we were specifically interested in the differences 
between language and manual gestures, so we limit our 
report to those subsets of the analysis. We observed within-
role differences between language and manual gesture 
burstiness estimates for the Follower role (b = -.07, p < 
.001) and for the Giver role (b = .05, p = .03). We also 
observed a between-role difference for Follower: Manual 
Gesture v. Giver: Language (b=.06, p=.04). The results from 
this analysis suggest that, across map task role, the verbal 
channel (i.e., language channel) had higher burstiness 
estimates relative to the non-verbal channels, and 
specifically the manual gesture channel.  

Investigating the Relative Magnitude of 
Burstiness in the Language Channel 

In the last section, we established that communicative 
channels exhibit temporal patterns of behavior that (1) vary 
across verbal and non-verbal channels and (2) are all bursty 
relative to exhibiting random or periodic temporal patterns. 
But what does it mean to be more bursty?  It is important to 
note that these channels are made up from specific sub-
channels that are further made up from individual behaviors. 
In an effort to better understand the relative magnitude of 
burstiness, in this section, we focused on the language 
channel because this channel exhibited the highest estimates 
of burstiness. Specifically, we zoomed into the language 
channel and investigated the temporal patterns of the sub-
channels.  

The language channel is made up of three specific sub-
channels: dialogue acts, discourse connectives, and 
descriptions. We expected to observe higher burstiness 
estimates for the ‘descriptions’ sub-channel relative to the 
other two channels. This hypothesis is motivated by 
previous research that focused on the burstiness of various 
linguistic levels in texts (Altmann, Cristadoro, & Esposti, 
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2012; Altmann, Pierrehumbert, & Motter, 2009). Altmann 
et al. (2009) observed that burstiness increased across 
semantic classes where ‘entities’ like proper nouns had 
higher burstiness estimates relative to predicates like in, 
which in turn had higher estimates than higher level 
operators like the. If the results observed in texts are 
consistent with human dialogue, we should expect to 
observe that descriptions like providing a relative direction 
will have higher burstiness estimates relative to dialogue 
acts like saying no or discourse connectives like saying um.  
	

 
Figure 3a and 3b:  

Burstiness across language channels with a) Information 
Giver (G) and Follower (F) combined, and b) the roles 

separated. Error bars reflect 95% CIs. 
 
Linear models were utilized to predict burstiness 

estimates. Fixed effects for these models included map task 
role (Giver or Follower), language sub-channels (Dialogue 
Acts, Discourse Connectives, Descriptions), and event count 
for each communicative channel. Similar to the previous 
analysis section, event count was added into the model to 
act as a covariate to control for the potential relationship 
between burstiness estimates and the number of events 
going into the analysis. Dyad and map type were again 
included as random effects. We observed that descriptions 
(M = .08, SE = .005) had higher burstiness estimates relative 
to discourse connectives (M = -.06, SE = .004, b = .06, p < 
.001) and dialogue acts (M = -.11, SE = .004; b = .17, p < 
.001) (Figure 3a). Discourse connectives and dialogue acts 
were both more periodic than bursty, and dialogue acts were 
more periodic (closer to -1) relative to discourse connectives 
(b = .11, p < .001). These results suggest that various levels 
of verbal dialogue have different temporal patterns and such 
patterns have interesting parallels to previous research 
studying the burstiness of text corpora. We discuss these 
parallels in addition to the insights gained from the analysis 
section to better understand the pattern of results in the 
previous analysis section.   

Discussion 
The primary goal of the current paper was to better 
understand the temporal patterns of verbal and non-verbal 
behaviors during face-to-face multimodal human 
communication. We submitted the multimodal corpus to an 
analysis of burstiness. In the first analysis section, we 
observed that communicative channels differed in the 
degree of burstiness, with the verbal channel having higher 
burstiness estimates relative to non-verbal channels like 
manual gestures, face & head, and face touch. To add 
nuance to this result, in the second analysis section, we 
focused on better understanding the magnitude of 
burstiness, and zoomed into the language channel. In this 
analysis, we observed that a more informative sub-channel, 
‘descriptions’, had higher burstiness estimates relative to 
sub-channels that focused on operators and modifiers. 

Much work in the cognitive sciences has argued that 
verbal and non-verbal behaviors are intrinsically related via 
the same communicative system (Goldin-Meadow, 2005; 
McNeill, 1992). Recent work (Louwerse et al., 2012) has 
made this argument by focusing on evidence of 
synchronization across verbal and non-verbal channels. In 
the current paper, we observed that, verbal and non-verbal 
channels differ in terms of estimates of their temporal 
burstiness. An important question is what these differences 
reflect. To begin to find an answer to this question, we 
examined certain language sub-channels and found higher 
degrees of burstiness for descriptive productions compared 
to pragmatic productions like dialog acts or connectives.  

Considering the latter results, there are a few possible 
explanations for the observation that verbal and non-verbal 
channels exhibit different types of temporal patterns, with 
the verbal channel exhibiting higher burstiness estimates. 
The first possible explanation is that increased estimates of 
burstiness for the verbal channel means that more 
information is contained within this communicative channel 
relative to the non-verbal channels. This suggestion is 
influenced by the observations of higher degrees of 
burstiness in higher-level semantic classes in texts 
(Altmann, et al., 2009) and higher degrees of burstiness in 
descriptive sub-channel in dialogue (the current paper’s 
second analysis section). If this is the case, our results point 
to the proposal that verbal channels during human 
communication are more informative relative to non-verbal 
channels. However, this possibility seems unlikely because 
our own results show that the direction of burstiness 
estimate differences for the language and manual gesture 
channels are not consistent: higher estimates for language 
relative to manual gesture for the information giver and 
higher estimates for manual gesture relative to language for 
the information follower.  

The second possible explanation is that an important 
property of multimodal communication is having a 
collection of different types of temporal patterns across 
communicative channels. This proposal, what we call the 
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‘temporal heterogeneity’ hypothesis, suggests that 
successful communication emerges from a diverse suite of 
information channels that vary in temporal properties. An 
important adaptive property of a complex system, such as a 
dyadic communicative system (Dale, Fusaroli, Duran, & 
Richardson, 2013; Fusaroli, Raczaszek-Leonardi, & Tylén, 
2013), is the ability for multiple components with specific 
intrinsic properties to self-organize to form higher-level 
structures (Kello & Van Orden, 2009; Kugler & Turvey, 
1987). This proposal is amenable to the hypothesis that 
verbal and non-verbal channels are part of the same 
integrated system (Goldin-Meadow, 2003; McNeill, 1992) 
and that gesture and speech are complementary 
communicative channels important for the resolution of 
referential expressions (Louwerse & Bangerter, 2010; 
Seyfeddinipur & Kita, 2001). The current paper contributes 
to this line of argument by showing, at a specific level of 
analysis, that verbal and non-verbal channels have different 
types of temporal patterns and that the heterogeneity of 
these temporal patterns might be important for successful 
communication. Another important contribution is the 
introduction to a simple analysis of the temporal structure of 
behavioral event dynamics, the burstiness analysis. Future 
work is required to better understand the connection 
between varying degrees of burstiness across diverse types 
of human behavioral patterns. 
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