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Abstract 

We investigate the linguistic co-construction of interpersonal 
synergies. By applying a measure of coupling between 
complex systems to an experimentally elicited corpus of joint 
decision dialogues, we show that interlocutors’ linguistic 
behavior displays increasing signature of multi-scale 
coupling, known as complexity matching, over the course of 
interaction. Furthermore, we show that stronger coupling 
corresponds with more effective interaction, as measured by 
collective task performance.  

Keywords: Linguistic interaction; Complexity matching; 
Scaling Laws; Joint Decision Making. 

Introduction 

Language as Joint Action 
Recent approaches to linguistic conversation consider 
language in terms of joint action (Clark, 1996; Galantucci & 
Sebanz, 2009). Through dialogue, interlocutors are observed 
to coordinate behaviors on multiple levels, from subtle 
bodily sways (Shockley, Richardson, & Dale, 2009) to 
alignment of syntax and high level situation models 
(Pickering & Garrod, in press). These findings have often 
been related to priming mechanisms on the level of 
individual cognition: by perceiving and interpreting 
linguistic forms, interlocutors prime each other to produce 
similar forms and therefore becomes increasingly aligned 
over time (Pickering & Ferreira, 2008). An increasing 
number of studies suggest, however, that linguistic 
coordination is more than just increased similarity between 
individuals or behaviors. It enables interpersonal synergies, 
where the interlocutors’ actions and cognitive processes 

become nonlinearly coupled, i.e. multiplicatively 
interdependent (Dale, Fusaroli, Duran, & Richardson, in 
press; Fusaroli, Raczaszek-Leonardi, & Tylén, accepted; 
Riley, Richardson, Shockley, & Ramenzoni, 2011). An 
important argument for the linguistic co-construction of 
interpersonal systems has been to show how linguistic 
coordination enables augmented or even otherwise 
impossible cognitive processes (Fusaroli, Gangopadhyay, & 
Tylén, in review; Hutchins & Johnson, 2009; Theiner, 
Allen, & Goldstone, 2010). In this paper, we complement 
the existing focus on the end results of interaction 
approaching the interaction dynamics itself: What aspects of 
interaction dynamics provide the basis for co-constructed 
interpersonal systems? We investigate the general 
hypothesis that a statistical coupling in scaling law relations 
of speech signals corresponds with interpersonal synergies 
created in dialog. This coupling is theorized in terms of 
complexity matching (West, Geneston, & Grigolini, 2008), 
and is shown to increase with more effective linguistic 
interactions, as measured by collective task performance. 

Linguistic Complexity Matching 
Complex systems – such as human beings – produce 
sequences of outcomes with long-range correlations at 
strongly interacting time scales. In other words, the different 
time scales at which we can analyze human behavior are 
interacting according to scaling laws and are evidenced by 
heavy-tail distributions such as lognormal or Pareto 
distributions (Kello et al., 2010; Riley & Van Orden, 2005). 
Recent work has proposed that the coupling of two complex 
systems can be assessed by their complexity matching, that 
is, the matching of the scaling laws exponents (Aquino, 



 

 

Bologna, West, & Grigolini, 2011; West, et al., 2008). 
While initially developed for the description of physical 
systems, the notion of complexity matching has recently 
been successfully applied to very basic interpersonal 
coordination tasks (Marmelat & Delignières, 2012). 

While scaling laws have been shown in several non-
interactional linguistic phenomena (Kello, Anderson, 
Holden, & Van Orden, 2008; Kello, et al., 2010), linguistic 
behavior during actual conversations has not yet been 
analyzed from this perspective. However, seminal work 
indicates how speech production is matched between 
interlocutors on a number of individual time scales: short 
term respiration rhythms (McFarland, 2001), turn-taking 
timing (Wilson & Wilson, 2005), and longer term patterns 
of interaction (Levitan & Hirschberg, 2011). In this study 
we investigate the presence of scaling laws and the 
matching of temporal complexity in conversational acoustic 
production between interlocutors, thus considering multiple 
time scales at once. Building on the idea that language 
enables interpersonal coordinative coupling, we hypothesize 
that: 

1. Linguistic coordination between interlocutors 
shows scaling laws, that is, interaction-dominant 
dynamics indicative of self-organization (Van 
Orden, Holden, & Turvey, 2003).  

2. Speech event scaling law exponents match 
between interlocutors in a dyad. 

3. Such complexity matching increases over time, as 
the dyad develops coordinative routines. 

4. Not all dyads will present the same level of 
complexity matching. The stronger the matching, 
the better the joint cognitive performance of the 
dyads. 

To test these hypotheses, we rely on a video corpus of 
task-oriented conversations where dyads had to repeatedly 
make joint decisions (Bahrami et al., 2010; Fusaroli et al., 
2012). The corpus granted us sequences of linguistic 
interactions and measures of dyads’ collective task 
performance, allowing for the investigation of the 
development of linguistic complexity matching and its 
effectiveness. The complexity of each interlocutor’s speech 
events for each trial of the joint decision task was assessed 
in both the frequency and temporal domain employing 
methods based on multi-model inference (Burnham & 
Anderson, 2002) and Allan factor (Allan, 1966).  

Materials and Methods 
The corpus consisted of approximately 20 hours of video 
recording of sixteen dyads (n=32, 14 m/18 f, mean age 25.2, 
SD=6.9, all native speakers of Danish who had given 
informed, written consent) that each performed on average 
92 (SD = 15.5) joint decision trials for a total of 1472 joint 
decision trials. The participants were recorded while sitting 
in front of their own respective screen at right angles to each 
other in a darkened room (see figure 1a). On each trial they 
were sequentially shown two 85 millisecond long visual 
displays containing six Gabor patches (see figure 1c). By 

pressing buttons, the participants had to individually 
indicate which of the displays contained a contrast oddball. 
As long as both participants gave the same answer they 
would automatically proceed to the next individual trial. 
However, if their individual choices disagreed, they were 
prompted to negotiate, by freely discussing with each other, 
a joint decision. There was no time or other constraints on 
the joint decision dialogues. Mid-way through the 
experiments there was a break and the participants were 
asked to exchange seats, thus generating two experimental 
sessions. 

 
Figure 1: Experimental setup (Adopted with permission 

from Fusaroli, et al., 2012). (a) The experimental setup. (b) 
Group average psychometric functions that relates the 
individual and group choice to stimulus strength. The 

proportion of trials in which the target was reported to be in 
the second interval is plotted against contrast difference at 
the oddball location. Circles: average performance of the 

less sensitive dyad members; squares: average performance 
of the more sensitive dyad members; diamonds: average 
performance of the dyads. (c) Schematic illustration of a 

typical trial. 

Measuring Interpersonal Performance 
Psychometric functions were estimated for each dyad 
member and for the dyad by calculating the proportion of 
trials in which the oddball was reported in the 2nd interval 
versus the contrast difference at the oddball location (see 
figure 1b). Using the slope measure of the psychometric 
function, we quantified individual dyad members’ as well as 
the dyad’s sensitivity and defined “collective benefit” as the 
ratio of the dyad’s slope to that of the more sensitive dyad 
member. A collective benefit value below 1 would indicate 
that collaboration was counterproductive (the dyad did 
worse than its more sensitive member), while a value above 
1 would indicate successful cooperation, i.e. that the dyad 
gained a benefit relative to its more sensitive member (for 
more details on the psychometric function, cf. Bahrami, et 
al., 2010). 
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Measuring Linguistic Complexity 
The complexity of the interlocutors’ linguistic behavior was 
analyzed by identifying the distributional shape and 
temporal structure of the speech event data through two 
complementary analyses. The former requires a 
distributional analysis that chooses the best fitting 
distribution from a set of candidate distributions. The latter 
requires investigating the temporal correlations of the 
behavior of interest. Observed behaviors that are correlated 
over long ranges of temporal scales tend to follow a 1/f 
scaling relation (Van Orden, et al., 2003).  

The videos from the sixteen dyads were annotated at a 10 
ms scale for speech events, pauses and turn-taking dynamics 
employing a combination of listening, audio-wave 
inspection and automated analysis of pitch and intensity 
using Praat (Boersma, 2001) and MATLAB (Mathworks, 
inc). Pauses were defined as reduced intensity and lack of 
pitch lasting beyond .2 seconds. From the linguistic 
behavior of each interlocutor during each joint decision we 
then extracted the onset/offset intervals of the acoustic 
signal. These were used to investigate the distributional 
properties of speech events. To test for long-range 
correlations of speech events, we computed a binary spike 
train for every trial of each interlocutor’s acoustic signal. 
The binary spike train entailed a sequence of zeros and ones, 
where “1” would indicate an onset or an offset of a speech 
event, that is the change from silence to sound or vice versa. 
Each binary spike train (by trial per interlocutor) was used 
as the input for an Allan Factor analysis. This method will 
be discussed below. 

Estimating the Distributional Properties of Speech 
Events  
As a preliminary step, we utilized a maximum likelihood 
method termed multi-model inference (MMI, Burnham & 
Anderson, 2002) to identify the best fitting statistical 
distribution in onset/offset interval distributions. MMI 
assesses the likelihood for a given set of data to be 
generated from each of several candidate model 
distributions. Importantly, the method accounts for 
differences in free parameters among candidate distributions 
by computing Akaike’s information criterion (AIC) from 
maximum likelihood values. We included distributions into 
the candidate set that are known to have heavy tails (e.g., 
lognormal, Pareto, and gamma) and those known not to 
have heavy tails (e.g., Gaussian and exponential).  

Distributions of onset/offset intervals for every joint 
decision trial for each interlocutor in the 16 dyads (2739 
trials total) were tested against five different functions using 
multi-model inference: Gaussian, exponential, lognormal, 
Pareto, and gamma. AIC values showed that the lognormal 
function was most likely to generate the distributions for 
most onset/offset interval distributions (82% of all trials), 
with Pareto distribution being most likely to generate the 
majority of the remaining trials (18% of all trials). Both 
lognormal and Pareto distribution are heavy-tailed. Given 
the large predominance of lognormal distributions, we 

estimated the parameters (µ and σ) of the lognormal 
distribution for further analysis. The µ provides information 
about the mean/mode of the lognormal distribution, whereas 
the σ provides the variance or skew in the tail of the 
asymmetric distribution (see figure 2b).  

Estimating the Temporal Structure of Speech 
Events 
We estimated scaling laws in the temporal domain of the 
spike trains of speech events by using the Allan factor 
analysis (AF, Allan, 1966). Events were counted in adjacent 
windows of time with increasing scales, and the normalized 
squared differences between windows of the same scale 
were averaged. When events are Poisson distributed, 
average squared differences by window size remain constant 
over increasing window size, whereas, event structures that 
are power law-like fall into nested clusters of window size 
where the normalized squared differences will approximate 
a power law function of window size (Kello, in press; 
Lowen & Teich, 2005; Thurner et al., 1997).  

Formally, given a sequence of counts N in a time series of 
length L, where Nj is the number of events in the jth window 
of size T, we first compute the differences in counts of 
events between adjacent windows: 

),()()( 1 TNTNTd jj −= +
 (1) 

The Allan factor A for a given time window T is the 
expected value of the squared differences, normalized by 
mean counts of events per window, 
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2
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Poisson processes yield A(T) ~ 1 for all T, whereas power 
law clustering yields A(T) ~ (T/T1)α, where T1 is the smallest 
time scale considered, and α the exponent of the scaling 
relation. Normalized, continuous point processes with α ~ 0 
are Poisson-distributed (i.e., uncorrelated temporal 
structure). By contrast, continuous point processes with α 
near the upper bound of α ~1 are highly-clustered, power 
law-like temporal structures and can be considered fractal 
stochastic point processes (Thurner, et al., 1997). See figure 
2a and 2c for a graphical depiction of the Allan Factor 
analysis of speech events.  



 

 

 
Figure 2: Overview of analyses. (Adopted with permission 

from Abney et al., submitted). (a) Transformation from 
wave form to speech event point process and to binary spike 
train. (b) Idealized lognormal probability density plot. Note 
differences in σ between two distributions: a heavy tail and 

a normal one. (c) Idealized plot of Allan Factor estimates for 
each window size, T. Note the differences in slope between 

Signal A and Signal B from 1a. 
The AF analysis of speech events provides a measure of 

temporal complexity for each trial and each interlocutor in a 
dyad. Thus, we can track the trial-by-trial unfolding of 
complexity of individuals and of the coordination between 
interlocutors in a dyad.  

Measuring Complexity Matching 
We assessed complexity matching by correlating the trial-
by-trial complexity indexes of the interlocutors within each 
dyad. This process was performed on the overall sequence 
of trials and on a session-by-session basis – to observe the 
temporal evolution of complexity matching. For the 
distributional analysis we employed the σ (the variance of 
its normal, unlogged, counterpart, a measure of the 
heaviness of the tail of the distribution) as complexity index, 
while for the temporal analysis we employed A (the Allan 
Factor). 

In order to control for incidental complexity matching due 
to task structure and not actual linguistic interaction, we 
created virtual dyads: i.e., for each dyad we matched the 
individual interlocutors’ complexity indexes with all the 
interlocutors with whom she had not engaged in dialogue 
and averaged the complexity matching values achieved.  

To control for effects due to simple local dependencies 
akin to behavioral synchrony (e.g. Interlocutor A starts 
speaking as a reaction to interlocutor B ceasing to speak), 
we computed the mutual information, a non-linear 
analogous to cross-correlation (MI, Kraskov, Stögbauer, & 
Grassberger, 2004), for the two signals in real and virtual 
dyads. We tested for mutual information at lags comprised 
between – 20 seconds and + 20 seconds. Since we found the 
highest mutual information at lag 0, we only report statistics 
for that lag value.  

Finally, we employed the Pearson coefficient of the 
complexity matching as an index of the strength of the 
matching and correlated it with collective benefit. All 
analyses were performed in Matlab (Mathworks, inc). 

Results 

Performance 
In terms of task performance, dyads gained a significant 
collective benefit in the perceptual decision-making task, 
compared to the better member of each dyad: M = 1.18, SD 
= 0.25, t(15) = 2.84, p = .01. However, not all dyads did 
equally well and 3 out of 16 dyads did not gain a collective 
benefit (i.e. did not exceed their respective best member’s 
individual performance). This variation in collective benefit 
suggests that not all dyads achieved the same degree of 
functional, interpersonal coupling.  

Complexity Matching 
Distributional Shape: Analysis of the σ of the lognormal 
distribution showed that 8 out of 16 dyads display a 
significant negative complexity matching (rmean = -.18, SD = 
.07). The absolute coefficient of matching is significantly 
higher than in virtual dyads (rmean ~ 0, SD = .04): t(15) = 
5.88, d = .70, p < .001. Complexity matching in this domain 
did not show any significant difference between sessions. 

Interlocutors displayed significantly higher mutual 
information in the frequency domain than virtual pairs, t(15) 
= 3.74, d = .43 p = .006. However, mutual information was 
low (M = .01, SD = .004), displayed a decrease over time 
(t[15] = 7.70, d = 0.80, p < .001) and did not correlate with 
complexity matching, nor with collective benefit. Thus no 
evidence was found for local, within-trial coordination 
between interlocutors. 
Temporal structure: For the complexity of temporal 
structure analyzed by the AF, 11 out of 16 dyads 
displayed a significant positive complexity matching 
(rmean = .25). Complexity matching was significantly 
higher than in virtual dyads (rmean ~ 0), t(15)= 24.31, d 
= 0.97, p < .001, and significantly increased over 
sessions: t(15) = -3.38, d = .52, p = .004. 

In the temporal domain, interlocutors displayed 
significantly higher mutual information than virtual pairs 
(t[15]= 3.86, d =0.50 p=.0015). However, mutual 
information was low (M=.00001, SD=.00001), displayed a 
significant decrease over time, (t[15]=3.04, d = 0.38, 
p=0.008) and did not significantly correlate with complexity 
matching, nor with collective benefit. 

Complexity Matching and Performance 
Coefficients of complexity matching from the distributional 
analysis did not correlate with collective benefit. 

However, in the temporal domain the coefficients of 
complexity matching displayed a very significant 
correlation with collective benefit: r = .61, p = .012 (see fig. 
3a). Interestingly, while the strength of complexity matching 



 

 

in the first session did not significantly correlate with 
collective benefit (it did display a trend: r = 0.47, p = .069, 
see fig. 3b), a strong correlation was found in the second 
session: r = .72, p = .0025 (see fig. 3b). A stepwise forward 
regression with collective benefit as dependent variable was 
run to assess the relative role of complexity matching in the 
two sessions. The resulting model only contained 
complexity matching from session 2 and excluded 
complexity matching from session 1 (r=-.011, p=.961), 
suggesting that achieved complexity matching subsumes 
and overrides initial complexity matching. Finally, the 
change in complexity matching – measured as the slope 
between sessions – was also found to correlate with 
collective benefit: r=0.47, p= 0.048.  

      

 
Figure 3: Correlation plots. (a) Correlation between 

collective benefit and overall complexity matching in the 
temporal domain. (b) Correlation between collective benefit 
and complexity matching in the first session. (c) Correlation 
between collective benefit and complexity matching in the 

second session. 
Discussion 

In the previous sections, we have approached linguistic 
interaction from the perspective of interpersonal coupled 
systems: To co-construct such systems, dyads must finely 
coordinate action on multiple levels and time scales. 
Moreover, the joint task performance of a conversing dyad 
should depend on the degree of functional coupling between 
the interlocutors, to the extent that an interpersonal system 
is co-contructed in the service of task performance. Our 
findings seem to support such predictions. 

The overall results of the distributional properties and the 
temporal structure of interlocutor speech events suggest 
lognormal fits in the former and variable amounts of 
correlated clustering of speech events in the latter. The 
temporal structure of speech events displays significant 
between-interlocutor complexity matching, not found in 
virtual dyads. Interestingly, the degree of complexity 
matching was significantly predictive of dyads’ collective 
performance benefit. This effect is consistent with the 
finding that complexity matching increased over time. This 
suggests that functional interpersonal coupling is not 
immediately achieved but evolve through repeated 

interaction presumably as an effect of coordinative routines 
and interdependencies being developed.  

These effects cannot be attributed to distributional 
properties of the speech events evidenced by the lack of 
matching between the σ of two interlocutors in a dyad. 
Furthermore, the effects of complexity matching cannot be 
attributed to a local coordination, as measured by mutual 
information—that is, complexity matching was not a 
product of speakers simply matching their utterances, or 
regularly alternating their turns. Lastly, the results cannot be 
attributed to the structure of the task, since they are not 
observed in virtual dyad controls, nor to simple initial 
matching, since complexity matching in the first session 
does not correlate with collective benefit. 

This is not to say that task structure does not have an 
effect. Abney et al. (submitted) recently observed the degree 
of complexity matching in dyadic interaction to be 
modulated as a function of the external constraints imposed 
on the dyadic system (in this case affiliative vs. 
argumentative conversational topics). Our current findings 
are commensurate with Abney et al. and complement them 
by introducing a more explicit investigation of the temporal 
development of complexity matching. 

The development of interpersonal synergies over 
time 
We observe that complexity matching in the temporal 
domain is statistically more significant and informative than 
complexity matching in the frequency domain. The 
importance of temporal dynamics is also emphasized by the 
temporal development of complexity matching and mutual 
information. Mutual information decreases across sessions 
while complexity matching increases, suggesting that initial 
local coordination (akin to behavioral synchrony) might be 
employed initially only to be replaced by more complex 
forms of coordination at later stages (Dale, et al., in press; 
Fusaroli, et al., accepted). The correlation of complexity 
matching with collective benefit also increases across 
sessions.  

In conclusion, linguistic interactions enable augmented or 
innovative end results in ways that display signatures of 
strong coupling with corresponding functional effects. In the 
context of physical systems these signatures have been 
shown to be indicative of self-organization on a 
superordinate level. The establishment of interaction-
dominated dynamics in task-oriented conversation 
strengthens the idea of conversations as interpersonal 
synergies. Moreover, the observed graded complexity 
matching and its relation to collective benefits suggests that 
interpersonal synergies are not static qualities but rather a 
question of degree, time and skill. 

The methods here developed show much promise for the 
study of a wider variety of linguistic interactions and aspects 
of interpersonal coordination.  
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